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Abstract

Efficient solution of large-scale, ill-conditioned and highly-indefinite
algebraic equations often relies on high quality preconditioners to-
gether with iterative solvers. Because of their robustness, factorization-
based algorithms play a significant role in developing scalable
solvers. We discuss the state-of-the-art, high performance sparse
factorization techniques which are used to build sparse direct
solvers, domain-decomposition type direct/iterative hybrid solvers,
and approximate factorization preconditioners. In addition to al-
gorithmic principles, we also address the key parallelism issues
and practical aspects that need to be taken under consideration
in order to deliver high speed and robustness to the users of todays
sophisticated high performance computers.
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1 Fundamentals of parallel computing

Parallel computing has become an increasingly indispensable tool in var-
ious computing disciplines, such as modeling physical phenomena in sci-
ence and engineering simulations as well as technical computing in indus-
try. Here, we give a brief overview of the parallel architectures, program-
ming, applications, and performance. The more thorough treatment of
the subject can be found in [7, 62] and many references therein.

1.1 Parallel architectures and programming

Parallelism is ubiquitous and occurs at many levels of hierarchy in mor-
den processor architectures. There are several different forms of parallel
computing with varying granualities: bit level, instruction level, data,
and task parallelism. Pipelining is the most fundamental form of paral-
lelism commonly used to increase throughput. In a pipeline, the com-
putation for an input is divided into stages with each stage running on
its own spatial division of the processors. The output of one stage is the
input of the next one. The different stages of the pipeline are often ex-
ecuted in parallel or in time-sliced fashion. The basic usages of pipeline
are instruction execution, arithmetic computation and memory access.
For example, the instruction circuitry can be divided into five stages:
instruction fetch, instruction decode, register fetch, arithmetic, and reg-
ister write back stages, wherein each stage processes one instruction at a
time. This allows overlapping execution of five instructions at different
stages.

Based on the pipeline principle, the vector machines with SIMD (Sin-
gle Instruction, Multiple Data) instructions were introduced to provide
high-level operations on arrays of elements. SIMD instructions perform
exactly the same operations on multiple data objects, thus produce mul-
tiple results at the same time. Each instruction pipelines the operations
on the individual elements of a vector. The pipeline includes the arith-
metic operations (e.g., multiplication, addition, etc.) and memory ac-
cess. For example, in 1999, Intel introduced the SSE (Streaming SIMD
Extensions) (and SSE2 extension for double precision) in the x86 ar-
chitectures. The hardware is augmented with a set of vector registers,
each of length 128 bits. Each floating-point vector instruction can deliver
four results of four pairs of single-precision numbers or two results of two
pairs of double-precision numbers. Intel’s newer SIMD instruction set is
called AVX which supports 512-bit wide vectors [9]. The other examples
of SIMD instruction sets include VIS (Sun Microsystem’s SPARC) and
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AltiVec (Apple/IBM/Freescale Semiconductor).
In recent years, GPU computing has become commonplace in sci-

entific and enginnering applications. Here, a GPU (graphics processing
unit) is used together with a CPU to accelerate computations. CPU +
GPU is a powerful combination because CPUs consist of a few cores opti-
mized for serial processing, while GPUs consist of thousands of smaller,
more efficient cores designed for applications with abundance of data
parallelism. This provides unprecedented application performance by
offloading compute-intensive portions of the application to the GPU,
while the remainder of the code still runs on the CPU.

The state-of-the-art massively parallel architectures usually consist
of clusters of distributed memory, manycore nodes. For example, in the
list of the world’s top 500 fastest supercomputers (http://www.top500.
org/), the first on the list is Tianhe-2, which contains 16,000 compute
nodes, each comprising two Intel Ivy Bridge Xeon processors and three
Xeon Phi chips (with wide SIMD paralleism). The second on the list is
Titan, which contains 18,688 compute nodes, each comprising a 16-core
AMD processor and an Nvidia Kelper GPU. Utilizing such machines re-
quires exploiting both the coarse-level task parallelism and fine-grained
data parallelism, wherein the dataset is divided into pieces each of which
is stored on one compute-node. Data-parallel computations can be per-
formed locally on each node using the locally stored data. When needed,
nodes may send data to the other nodes through the interconnect fabric
for cooperatively performing the same task.

The level of sophistication of programming the parallel machines
above varies with different forms of parallelism. For the small degree
parallelism provided by the pipeline and vector forms, the compilers
usually can generate efficient codes to make full use of the hardware fea-
tures. The users do not need to write explicit parallel programs. For
the moderate parallelism provided by the shared memory machines, a
commonly used standard programming is OpenMP [85, 86]. OpenMP
is an implementation of multithreading, whereby a master thread (a
series of instructions executed consecutively) forks a specified number
of slave threads and a task is divided among them. The threads then
run concurrently, with the runtime system allocating threads to different
processors.

For the massive parallelism provided by the distributed memory ma-
chines, the commonly used standard programming is MPI (Message
Passing Interface) [80, 81]. MPI primarily addresses the message-passing
parallel programming model: data is partitioned and distributed among
the address spaces of different processes. Through cooperative opera-
tions, data is transferred from the address space of one process to that
of another process.

For the cluster of distributed memory with heterogeneous nodes with
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multicores and/or GPUs, it is insufficient to use MPI alone. We need to
use a hybrid programming model such as MPI+X, where MPI is used to
generate multiple processes across multiple nodes, and X is used within
the address space of each MPI process. Here, X can be OpenMP for
the classic cache-based multicore processors or OpenCL [84] (or Nvidia’s
CUDA [25]) for the GPUs on the node.

1.2 Parallel algorithms and applications

Vast amounts of applications can benefit from different levels of paral-
lelisms. In the early days of parallel computing, different parallel algo-
rithms were designed and tailored for different applications. This limits
the reusability of the algorithms and codes. A sustainable approach
is to identify a number of patterns of communication and computa-
tion each of which is common to a class of applications. Colella first
proposed a high level of abstraction categorizing seven such patterns
(Seven Dwarves) for the numerical methods commonly used in scien-
tific and engineering applications [24]: Structured grids, Unstructured
grids, Dense linear algebra, Sparse linear algebra, FFT, N-body meth-
ods, and Monte Carlo. Later, the researchers at Berkeley extended the
list to Thirteen Dwarves to capture the parallel computing patterns in
broader applications [7]. The additional six dwarves are: Combinatorial
logic, Graph traversal, Dynamic programming, Backtrack and branch-
and-bound, Construct graphical models, and Finite state machine. The
parallel hardware, software and algorithms can be designed to optimize
performance for each dwarf.

1.3 Performance models and upper bounds

Given the complexity of the modern architectures, the actual runtime
of the parallel algorithms and codes are extremely difficult to estimate.
Despite this, the performance upper bounds can be predicted reasonably
well using the following perofrmance models: the roofline model, Am-
dahl’s law, and the latency-bandwidth model. We briefly present them
below.

In numerical computing the traditional metric of analyzing an algo-
rithm efficiency is flop count. This is far from an accurate performance
predictor for the modern high-performance machines. Now performance
is more dominated by memory access and inter-node communication,
particularly for the algorithms involving graphs and sparse matrices.
Arithmetic Intensity (AI) is a measure to capture both floating-point
operations and the memory/network traffic; it is calculated as the ratio
of floating-point operations to DRAM traffic in bytes, i.e., flops:bytes
ratio. For example, the AI for Level 3 BLAS is O(n) and for Levels
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Figure 1.1: The roofline performance bound of a hyperthetocal machine
(source: S. Williams)

1 and 2 BLAS is O(1), where n is the matrix dimension. The AI for
FFT is O(log n), where n is the number of points. A higher AI indicates
more potential for data reuse in cache, and the kernel is more amenable
to various code optimizations to achieve a higher percent of machine’s
peak performance. The roofline model gives a more realistic performance
upper bound depending on both the computer architecture and the algo-
rithm/code to be executed [109]. Simply put, the performance is bound
to

Attainable Performance = min

{
Peak FLOP performance
Peak Bandwidth×AI

Fig. 1.1 depicts the peak roofline ceiling as a function of AI. Depend-
ing on how extensive the various optimization techniques are used, the
actual roofline may be lower than the peak. For example, if the SSE2
instruction (128-bit SIMD) is not used on the Intel Opterons, the peak
FLOP ceiling would be halved. Similarly for memory performance, if
the code exhibits many random memory access patterns, the peak band-
width ceiling would be lower.

For parallel computations speedup is commonly used to measure the
performance gains achieved by using multiple processors, which is defined
as the ratio of the sequential runtime over the parallel runtime. Amdahl’s
law gives an upper bound of the attainable speedup of a given parallel
algorithm [1], independent of the machine architecture. In a parallel
application, let s be the fraction of the work performed sequentially,
1− s is the fraction parallelized, and P is the number of cores. Then,

Attainable Speedup =
1

s+ 1−s
P

≤ 1

s
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That is, the sequential chunk of work prevents the code from scaling up
no matter how many cores are used. Therefore, nearly 100% of the code
needs to be parallelized in order to use millions of cores.

On the distributed memory systems, it is necessary to model the
cost of transferring data between different nodes, e.g., using MPI. A
commonly used cost model for network performance is α-β model, where
α refers to the latency and β is the inverse of the bandwidth between
two processors. The time to send a message of length n is roughly:

Time = latency + n/bandwidth = α+ n× β .

This is a simplified and ideal model, without taking into account such
practicalities as network congestion etc. For most parallel machines
we have α � β � time per flop. For example, on a Cray XE6,
time per flop = 0.11ns. Using MPI message transfer, α = 1.5µs ≈
13, 636 flops, and β = 0.17ns ≈ 12 flops per double word. Therefore,
the fundamental principle is to organize the parallel algorithm so that it
maintains high data locality and sends fewer long messages rather than
sending many short messages.

2 Sparse matrix basics

Sparse matrices are ubiquitous in scientific and engineering calculations.
A matrix is considered sparse if there are many zeros in it, and it is
worth using special algorithms to perform matrix operations on it. A
large class of sparse matrices arise from discretizing partial differential
equations (PDE) for which the number of nonzeros in the matrix does not
grow proportionally to the square of the matrix dimension (n2), but only
grows linearly w.r.t. n. Therefore, when the problem size increases, the
sparsity #nonzeros/n2 becomes smaller and sparse matrix algorithms
have asymptotically lower complexity than the dense counterparts.

The first issue to address is the data structure used to store a sparse
matrix. The goal is to store only the nonzeros in the matrix and to
perform operations only on the nonzeros, and to handle arbitrary spar-
sity patterns. In the early days, the coordinate format (a.k.a. triplets)
and the linked list were used. Although flexible, they are not efficient
for many matrix algorithms on high performance computers—the for-
mer requires more storage than necessary and the latter prevents the
algorithm from using the BLAS routines directly. Today several other
compressed formats are more widely used. The most popular format is
Compressed Row Storage (CRS) or Compressed Column Storage (CCS).
Let n denote the dimension of the matrix and nnz denote the number
of nonzeros in the matrix. The CSR format consists of three vectors:
one for floating-point numbers and the other two for integer values. The
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nzval vector of size nnz stores the nonzero values row-by-row contigu-
ously. The colind vector of size nnz stores the column indices of the
entries in nzval. The rowptr vector of size n+ 1 stores the position in
nzval that starts a new row. For example, the following 7-by-7 sparse
matrix 

1 a
2 b

c d 3
e 4 f

5 g
h i 6 j

k l 7


is represented in CRS as follows:

nzval 1 a 2 b c d 3 e 4 f 5 g h i 6 j k l 7
colind 1 4 2 5 1 2 3 2 4 5 5 7 4 5 6 7 3 5 7

rowptr 1 3 5 8 11 13 17 20 .

The CCS (a.k.a. Harwell-Boeing) format is a symmetric analogue of CRS
as follows:

nzval 1 c 2 d e 3 k a 4 h b f 5 i l 6 g j 7
rowind 1 3 2 3 4 3 7 1 4 6 2 4 5 6 7 6 5 6 7

colptr 1 3 6 8 11 16 17 20 .

Both formats require storage of nnz floating-point numbers and nnz+
n+ 1 integers. This is smaller than that required by the coordinate for-
mat: nnz floating-point numbers and 2 × nnz integers. With the CRS
storage format, the algorithm need to traverse the matrix in a row-wise
fashion to ensure sequential access to the nzval and colind arrays,
whereas with the CCS format, the algorithm need to traverse the matrix
in a column-wise fashion.

The other sparse data structures include block-entry format, skyline
or profile format, ELLPACK format and segmented-sum format, see [11]
for details. The latter two are good for machines with wide SIMD in-
structions.

In sparse iterative solution methods, the most used operation is
sparse matrix-vector multiplication (SpMV): y = Ax. Using the afore-
mentioned representations for A, it is fairly straightforward to code the
algorithms for y = Ax. However, the performance of the simple algo-
rithms is usually rather low. The main bottlenecks are due to the low
arithmetic intensity (bandwidth bound) and the strided access to the x
or y vectors. A number of optimization techniques have been developed
to mitigate the problems which can achieve several fold speedup relative
to the baseline implementations, see [12] for many papers on this topic.
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A unique aspect of sparse matrix computations is the connection
to combinatorial algorithms related to graphs. An indispensible tool is
the graph manipulation to reason about the nonzero structure and to
transform (e.g. via reordering) the matrix to increase the performance
of the numerical computation. A graph G = (V,E) consists of a finite
set V , called the vertex set and a finite, binary relation E on V , called
the edge set. There are three standard graph models commonly used for
sparse matrices.

• Undirected graph: The edges are unordered pairs of vertices, that
is, {u, v} ∈ E for some u, v ∈ V ; Undirected graphs can be used
to represent symmetric matrices: rows/columns correspond to the
vertex set V . For each nonzero A(i, j) there is an edge {vi, vj}.

• Directed graph: The edges are ordered pairs of vertices, that is,
(u, v) and (v, u) are two different edges; Directed graphs can be
used to represent nonsymmetric matrices.

• Bipartite graph: G = (U ∪V ;E) consists of two disjoint vertex sets
U and V such that for each edge {u, v} ∈ E, u ∈ U and v ∈ V .
Bipartite graphs can be used to represent rectangular or nonsym-
metric matrices.

The degree of a vertex v is the number of neighboring vertices con-
nected to v. An ordering or labelling of G = (V,E) having n vertices,
i.e., |V | = n, is a mapping of V onto {1, 2, . . . , n}. Very often, the
sparse matrix directly coming from the physical model is not in the best
ordering. We can apply various transformations by reordering the rows
(equations) and columns (variables) of the matrix (linear system), which
serve different purposes in different operations. In SpMV y = Ax, a re-
ordering may improve access locality to the x or y vectors, and reduce
communication in a parallel algorithm (see e.g. [83, 102, 104, 110].) In
sparse LU factorization A = LU , a reordering may reduce the number of
fill-ins in the L and U factored matrices (see e.g. [3, 5, 42, 45, 65, 78, 23]).

3 Direct methods for sparse linear systems

Direct methods for solving a sparse linear system Ax = b are based on
Gaussian elimination (GE). The matrix A is first decomposed (factor-
ized) into a lower triangular matrix L and an upper triangular matrix
U , then x is obtained by forward substitution with L followed by back
substitution with U . When A is symmetric and positive definite (SPD),
the Cholesky factorization A = LLT can be computed. When A is sym-
metric and indefinite, LDLT can be computed. In both cases, saving
is obtained by exploiting symmetry. In many situations, we need to
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Figure 3.1: Illustration of the fill-ins in sparse GE.

solve a transformed linear system for accuracy and/or performance rea-
sons. When A is dense we often use partial pivoting during GE and the
resulting factorization is PA = LU , where P is a permutation matrix
determined such that at each step of elimination the largest-magnitude
entry of the column is chosen as the pivot and the corresponding row is
swapped to the pivot row. Sometimes complete pivoting is used to swap
the largest-magnitude entry of the entire trailing submatrix to the pivot
position, resulting in a factorization PAQ = LU with both rows and
columns being permuted.

Many more complicated issues arise in sparse factorizations because
of the fill-ins, which are the new nonzeros generated in the factored
matrices L and U . Fig. 3.1 shows a 7 × 7 matrix with the original
nonzeros in black dots and the fill-ins in red dots.

A typical sparse solver consists of the following four distinct steps:

1. An ordering step that reorders the rows and columns such that
the factors suffer little fill, or that the matrix has special structure
such as block triangular form [37, 91].

2. An analysis step or symbolic factorization that determines the
nonzero structures of the factors and create suitable data struc-
tures for the factors.

3. A numerical factorization step that computes the L and U factors.

4. A triangular solution step that performs forward and back substi-
tution using the factors.

There are vast varieties of algorithms associated with each step. Usu-
ally steps 1 and 2 involve only the graphs of the matrices and integer
operations. Steps 3 and 4 involve floating-point operations. Step 3 is
often the most time-consuming part, whereas step 4 can be orders of
magnitude faster. The algorithm used in step 1 is quite independent of
that used in step 3. But the algorithm in step 2 is often closely related
to that of step 3. In a solver for SPD systems, the four steps can be
well separated. For the most general unsymmetric systems, the solver
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may combine steps 2 and 3 (e.g. SuperLU) or even combine steps 1, 2
and 3 (e.g. UMFPACK) so that the numerical values also play a role in
determining the elimination order.

3.1 Combinatorics

The ordering algorithms and symbolic factorizations are based on various
graph models. They are simpler and faster for symmetric factorizations
(e.g. Cholesky factorization) than for unsymmetric factorizations. Given
certain elimination order (v1, v2, . . . , vn), the purpose of the symbolic
analysis is to determine the fill-in positions for the factors L and U (called
the filled graph, denoted as G+(A)), and set up the sparse compressed
data structures for them. It turns out that the fill-ins can often be
discovered solely based on the original graph G(A). The graph tool to
aid this task is reachable set. A node vj is reachable from node vi if
there is a path from vi to vj in the graph. Let S be a subset of the
vertex set, the reachable set of y through S consists of the set of vertices
x such that x is reachable from y via a path (y, v1, . . . , vk, x) and all the
intermediate vertices vis are in S; this is denoted as Reach(y, S). The
following fill-path theorem by Rose and Tarjan gives precisely the edges
in G+(A).

Theorem 3.1. [94] Let G(A) = (V,E) be a directed graph of A, then
an edge (v, w) exists in the filled graph G+(A) if and only if
w ∈ Reach(v, {v1, . . . , vk}), where vi < min(v, w), 1 ≤ i ≤ k.

For a Cholesky factorization LLT , the graph reachability can be com-
puted efficiently with the aid of elimination tree (or etree) [99, 74]: The
vertices of the tree are integers 1 through n, representing the columns of
A. The first nonzero L(j, i), j > i in column i defines a child-parent edge
(i, j) of the tree. The etree can be computed based solely on G(A) in
almost linear time. The symbolic factorization algorithm can simply tra-
verse the etree bottom-up to discover all the reachable vertices (nonze-
ros) from the nonzeros in the children’s columns. The computational
complexity is linear w.r.t. the number of nonzeros in the factor L. For
unsymmetric LU factorization, the symbolic factorization involves more
work. The unsymmetric analogue of the etree is the column elimination
tree, i.e. the etree of ATA (or column etree). However, the analysis based
on the column etree only gives the nonzero structure of the Cholesky fac-
tor of ATA, which is an upper bound on the nonzero structure of L and
UT in A = LU . The precise symbolic factorization for LU has to base on
the elimination DAGs of both factors L and U [49]. The computational
complexity is more than linear w.r.t. the number of nonzeros in L and
U , but is much lower than the flop count needed for LU factorization
when employing symmetric pruning [39] and supernodes [29].
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The sparsity-preserving ordering is an important research area. The
goal is to solve an optimization problem of finding the best ordering of
equations and variables so that the number of fill-ins in the factors is min-
imized. Unfortunately, finding the optimal ordering is an NP-complete
problem [117]. Therefore, many heuristic algorithms for finding a good
ordering have been developed. One class of algorithms is called minimum
degree heuristic [45] for symmetric matrices. This is based on the follow-
ing graph changes due to elimination: eliminating a variable/equation
acts like eliminating a vertex in the associated undirected graph, and
the neighboring vertices of this vertex become fully connected (called
a clique). An edge in that clique would be a fill-in if it is not in A.
Therefore, the minimium degree algorithm chooses a vertex with the
smallest degree to eliminate next, which minimizes the upper bound on
the fill-ins produced at that step (local greedy strategy). Although the
basic principle is simple, the straightforward implementation is slow and
requires too much memory. The main innovation for efficient implemen-
tation is the introduction of the quotient graph [40, 47], which represents
the collection of cliques compactly throughout the elimination in space
bounded by the size of G(A) instead of G+(A). Another idea is to use ap-
proximate degree which is faster to compute than the exact degree [3, 2].
There are large numbers of research papers on the algorithmic and imple-
mentational variants and performance comparison [8, 3, 34, 47, 73, 101],
In particular, George and Liu’s article presented an excellent review on
this subject [45].

In contrast to minimum degree, the nested dissection algorithm is a
global approach based on divide and conquer paradigm. It recursively
partitions the (sub)mesh via separators. At each level of dissection, the
equations/variables associated with the two (or more) parts are first
eliminated before those of the separator. From reachability argument,
the vertices are not reachable between the two parts because they are
separated by the higher numbered separator vertices, therefore no fill-in
is generated between the two parts. At the end of recursion, the final or-
dering is performed such that the lower level separator nodes are ordered
before the upper level ones. The recursive bisection procedure results in
a complete binary (amalgamated) elimination tree, a.k.a. separator tree.
George first introduced this for two-dimensional finite element mesh [42],
and proved its optimality for fill-reduction: the number of nonzeros in the
Cholesky factor is O(n log n) and the operation count is O(n3/2). This
optimality condition cannot be proven for the minimum degree ordering
algorithm. The generalization of nested dissection to the irregular geom-
etry is the graph partitioning method [72, 48]. A good algorithm is to find
the separators as small as possible, so that the zero-block between the
two (sub)parts are large which better preserves sparsity. There is a large
body of research on finding small separators [60, 61, 65, 23, 92, 10, 18].
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Several good graph partitioning packages have been developed and are
publically available, including Chaco [61], ParMetis [64, 66] and PT-
Scotch [89, 88].

For unsymmetric LU factorization, a local greedy strategy analogous
to minimum degree was developed by Markowitz [78]: At each step of
elimination, row and column permutations are performed so as to mini-
mize the product of the number of off-diagonal nonzeros in the pivot row
and pivot column (called Markowitz count). This directly minimizes the
arithmetic operations and tends to minimize the number of fill-ins. Al-
though effective, it is difficult to implement the Markowitz algorithm
efficiently primarily due to two obstacles: one is the lack of compact
representation like the quotient graph used in the minimum degree algo-
rithm, and the other is the need for numerical pivoting in LU factoriza-
tion which requires the Markowitz ordering algorithm to be interleaved
with the numerical factorization (see MA28 [32] and MA48 [35]).

Several alternative strategies have been developed to make the or-
dering for LU separate from the numerical phase so that the implemen-
tation of the ordering is more efficient. When the pivots can be chosen
on the diagonal, the Markowitz scheme can be implemented efficiently
by using the bipartite quotient graph [87] and the bi-clique [5]. In ad-
dition, local symmetrization was introduced to restrict the search path
of length bounded by three while searching the reachable set to update
the Markowitz count. Thus the algorithm can be implemented in space
bounded by the size of G(A), and has the same time complexity as that
of the minimum degree algorithm [5, 6].

When partial pivoting is needed, one eficient approach is to sym-
metrize the matrix first forming ATA (ignoring numerial cancellation),
then to apply any symmetric ordering algorithm to G(ATA) which gives
a fill-reducing permutation Q. Then, Q is applied to the columns of A be-
fore performing the LU decomposition with row pivoting: PAQT = LU .
The rationale behind this is due to the following result.

Theorem 3.2. [46] Consider the Cholesky factorization ATA = RTR
and the LU factorization with partial pivoting PA = LU . For any row
permutation P , struct(L) ⊂ struct(RT ) and struct(U) ⊂ struct(R).

Therefore, the nonzero structure of Cholesky factor Rq in
(AQT )T (AQT ) = RT

q Rq upper bounds that of LT
q and Uq in P (AQT ) =

LqUq. Since with a good fill-reducing ordering Q, Rq contains less fill
than R does, which leads to an indirect effect that Lq and Uq are likely to
contain less fill than L and U . In essence, the column ordering Q tends
to minimize an upper bound on the actual fill-ins in the LU factors,
taking into account all the possible row permutations.

The sequential and shared-memory SuperLU solvers use this principle
for sparsity ordering. There are also efficient ordering algorithms that
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are based on the graph G(ATA), but without forming the matrix ATA
and base solely on G(A): COLAMD is a minimum degree variant [28]
and HUND is a nested dissection variant using the hypergraph model
for unsymmetric matrices [51].

In general, the minimum degree algorithms work well for small to
medium sized problems, while the nest dissection variants work better
for large-scale problems. Researcher have developed the hybrid methods
that perform nested dissection for a few levels, then uses a minimum de-
gree algorithm for each subgraph at the bottom level of dissection [90].
Apart from the two broad classes of methods above, several other order-
ing algorithms were also used to permute the matrix into certain special
forms, such as the maximum matching algorithm to compute the block
triangular form [37, 91], the (reverse) Cuthill-McKee algorithms (CM
and RCM) to reduce the bandwidth of the nonzero pattern [26, 44].

3.2 Dataflow organization, task ordering

The Gaussian elimination algorithm can be organized in different ways,
such as left-looking (fan-in) or right-looking (fan-out). These variants
are mathematically equivalent under the assumption that the floating-
point operations are associative (approximately true), but they have very
different memory access and communication patterns. The pseudo-code
for the left-looking blocking algorithm is given in Algorithm 1.

Algorithm 1. Left-looking Gaussian elimination

for block K = 1 to N do
(1) Compute U(1 : K − 1,K)

(via a sequence of triangular solves)
(2) Update A(K : N,K)← A(K : N,K)− L(1 : N, 1 : K − 1) · U(1 : K − 1,K)

(via a sequence of calls to GEMM)
(3) Factorize A(K : N,K)→ L(K : N,K)

(may involve pivoting)
end for

SuperLU and SuperLU MT use the left-looking algorithm, which has the
following advantages:

• In each step, the sparsity changes are restricted within the Kth
block column instead of the entire trailing submatrix, which makes
it relatively easy to accommodate dynamic compressed data struc-
tures due to partial pivoting.

• There are more memory read operations than write operations in
Algorithm 1. This is better for most modern cache-based computer
architectures, because write tends to be more expensive in order
to maintain cache coherence.
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The pseudo-code for the right-looking blocking algorithm is given in
Algorithm 2.

Algorithm 2. Right-looking Gaussian elimination

for block K = 1 to N do
(1) Factorize A(K : N,K)→ L(K : N,K)

(may involve pivoting)
(2) Compute U(K,K + 1 : N)

(via a sequence of triangular solves)
(3) Update A(K + 1 : N,K + 1 : N)←

A(K + 1 : N,K + 1 : N)− L(K + 1 : N,K) · U(K,K + 1 : N)
(via a sequence of calls to GEMM)

end for

SuperLU DIST uses right-looking algorithm mainly for scalability con-
sideration.

• The sparsity pattern and data structure can be determined before
numerical factorization because of static pivoting.

• The right-looking algorithm fundamentally has more parallelism:
at step (3) of Algorithm 2, all the GEMM updates to the trailing
submatrix are independent and so can be done in parallel. On
the other hand, each step of the left-looking algorithm involves
operations that need to be carefully sequenced, which requires a
sophisticated pipelining mechanism to exploit parallelism across
multiple loop steps.

The multifrontal method is a variant of right-looking approach [36,
75]. Similar to the right-looking algorithm, at each elimination step, sev-
eral variables (fully-summed variables) in the supernode (frontal matrix)
are eliminated and the Schur complement update matrix is produced.
In contrast to the right-looking algorithm where the Schur complement
is updated in place immediately at each step, the multifrontal method
postponed the update until it is time to eliminate the variables that are
affected by this update matrix. Operationally, there are a number of
such update matrices which are temporarily merged among themselves
and stored in memory before they are finally updated into the destina-
tion Schur complement location. In other words, the Schur complement
needs to be updated by a number of update matrices. The right-looking
algorithm performs each update right away, whereas the multifrontal al-
gorithm accumulates the update matrices in the partial sums first, and
performs the updates to destination at a later stage. The multifrontal
method has several advantages: it consistls of a sequence of dense ma-
trix operations, and can use Level 3 BLAS to great extent; the partial
sum of the update matrices is simply passed only between a node and its
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parent in the elimination/assembly tree, which eases parallel algorithm
design. The biggest drawback is the large memory demand for storing
the intermediate update matrices. This storage is often referred to as
stack memory.

3.3 Parallelization

A great deal of effort has been invested on parallelizing the numerical fac-
torization and triangular solution phases, because they often contribute
to over 90% of the total runtime. The (column) elimination tree is a
valuable tool to help design the parallel algorithms. The eliminations of
the (super)nodes corresponding to the different branches of the tree can
proceed independently in parallel. For the two (super)nodes situated
along the same leaf-to-root path, there is a potential dependency due
to the update from the descendant node to the ancestral node. Syn-
chronization is needed among the cores owning these nodes in order to
preserve the precedence relation during the computation. Intuitively,
the sparse factorization should exhibits more parallelism than the dense
counterpart, because both the tree-based parallelism and the fine-grained
dense matrix parallelism are available. However, the parallel scaling of
a sparse factorization is often hampered by many factors, including high
communication-to-computation ratio and irregular communication pat-
tern implicitly encoded in the sparse LU DAG.

On a shared memory machine there is no need to partition the matri-
ces. Usually the parallel elimination can use an asychronous and barrier-
free algorithm to schedule different types of tasks to achieve a high degree
of concurrency, such as panel or frontal matrix factorization, Schur com-
plement update, or assembly (extend-add) of the update matrices. The
scheduler facilitates synchronization among different tasks to preserve
task dependency and to maintain dynamic load balance. The example
codes include MA41 [4], PARDISO [98], SuperLU MT [30] and SuiteS-
parseQR [27]. SuperLU MT achieved over 10-fold speedups on a num-
ber of earlier SMP machines with 16 processors [30]. Recent evaluation
shows that SuperLU MT performs very well on current multithreaded,
multicore machines; it achieved over 20-fold speedup on a 16 core, 128
thread Sun VictoriaFalls [69].

The design of a distributed memory algorithm can be drastically dif-
ferent from a shared memory one. Many design choices are made due to
the need for scalability on a large number of processors. The input sparse
matrix A is usually divided by block rows, with each process having one
block row represented in a local row-compressed format. This format is
user-friendly and is compatible with the input interface of many other
distributed memory sparse matrix software. On the other hand, the fac-
tored matrices or the intermediate frontal matrices are often distributed
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by a two-dimensional block cyclic layout, see e.g., SuperLU DIST [70]
and WSMP [55]. This distribution ensures that most (if not all) proces-
sors can participate in the update at each block elimination step, and
also ensures that inter-process communication is restricted among the
row sets or the column sets of the processes. The right-looking sparse
LU factorization in SuperLU DIST uses elimination DAGs to identify
task and data dependencies, and a pipelined look-ahead scheme to over-
lap communication with computation. SuperLU DIST has achieved 50-
to 100-fold speedups with sufficiently large matrices, and over half a
teraflops factorization rate [114].

Although the ordering and the symbolic factorization algorithms re-
quire much less time than the numerical algorithms, it is still essential
to develop the distributed memory algorithms for memory scalability,
because the problem size is becoming too large to fit in the memory of
a single node. Parallelizing the minimum degree type of algorithm is
very challenging, even for shared memory machines [22]. The nested
dissection variants of algorithms exhibit more parallelism, and the no-
table successes with distributed memory parallel implementations in-
clude ParMETIS [66], PT-Scotch [23] and Zoltan [119].

For sparse Cholesky factorization LLT with SPD matrices, the par-
allel symbolic factorization algorithm is usually designed based on the
elimination tree [54, 43, 68]. The unsymmetric factorization has to base
on a more complex graph model—the elimination DAGs [49]. A good
parallel algorithm is presented in [52].

3.4 Available software

Researchers had developed a number of sparse direct solver packages
throughout many years, which span the spectrum of different factoriza-
tion methods (e.g., LU, Cholesky, LDLT, QR), and on different paral-
lel machines (e.g., shared memory, distributed memory). The follow-
ing survey article contains a table of representative codes: http://

crd-legacy.lbl.gov/~xiaoye/SuperLU/SparseDirectSurvey.pdf. Re-
cently, there have been several research papers on sparse factorizations
exploiting the GPU power [67, 76, 118, 97]. We will update our table as
new codes become available.

4 Approximate factorizations as precondi-
tioners

When iterative methods are used to solve the linear system, it is often
necessary to solve a transformed linear system M−1Ax = M−1b, where
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M is called the preconditioner. A good preconditioner M would approx-
imate A very well so that the eigenvalue distribution of M−1A is better
than that of A. On the other hand, we would like M to be cheap to
compute and to invert. Very often the two objectives are contradicting
and trade-off is desired in practice. There is a large body of research
on preconditioners, see the excellent survey by Benzi [14]. Here, we
present two classes of approximate factorization methods that are based
on “exact” factorization, but remove some “small” entries in the factors
and hence achieve better time and memory efficiency. The approximate
factorizations can be used as “black-box” algebraic preconditioners for
unstructured systems arising from a wide range of applications.

4.1 Incomplete factorization

A variety of incomplete LU (ILU) techniques have been studied exten-
sively in the past, including different strategies of dropping elements,
such as the level-of-fill structure-based approach (i.e., ILU(0), ILU(k)) [96],
the numerical threshold-based approach [95], and the numerical inverse-
based multilevel approach [15].

A standard design strategy is to start with a complete (sparse) factor-
ization code, modify the code to drop entries by various rules. If numeri-
cal pivoting is not a concern, the level-based dropping method can be im-
plemented efficiently by a separate symbolic factorization phase followed
by the numerical phase. The symbolic factorization phase determines
the nonzero structure of the factors using the incomplete fill-path theo-
rem [63] which is an adaptation of the fill-path theorem (Theorem 3.1)
for the complete factorization.

The rationale behind the level-based method is that for some prob-
lems, the higher the level of an entry is updated, the smaller it becomes.
This may not be true in general. The value-based threshold method
is often more robust than the level-based method, but it is harder to
implement efficiently. Here, we cannot separate the symbolic and nu-
merical phases; they must be interleaved at each step of factorization.
One of the most sophisticated value-based methods is ILUTP proposed
by Saad [95, 96], which combines a dual dropping strategy with numer-
ical pivoting (“T” stands for threshold, and “P” stands for pivoting).
The dual dropping rule in ILU(τ, p) first removes the elements that are
smaller than τ from the current factored row or column. It then keeps
only the largest p elements to control the memory requirement.

The original ILUTP algorithm was presented as a row-wise or a
column-wise variant. It suffers from the same inefficiency problem as
the row-wise or column-wise LU in that it lends to very little reuse of
the cached data. Recently, we developed a new variant of ILUTP that
exploits supernode in the incomplete factors. We modified the high-
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performance direct solver SuperLU [29] to perform incomplete factoriza-
tion. To retain supernode, a delayed dropping strategy is used which first
computes the entire supernode in L, then drops some rows in the supern-
ode if they are small in certain measure, such as vector norm [53, 71].
Although the average size of the supernodes in an incomplete factor is
smaller than that in a complete factor, the supernodal ILUTP can still
be twice as fast as the column-wise ILU [71]. It has the combined bene-
fits of retaining numerical robustness of ILUTP as well as achieving fast
construction and application of the ILU preconditioner.

For the secondary dropping strategy, the traditional methods exam-
ines only the current column (row), and limits the number of nonzeros
allowed in this column (row). We proposed an area-based fill control
method which examines the fill ratio due to all the preceeding columns,
and limits the current column size based on this dynamic fill ratio. This is
shown to be more flexible and numerically robust than the column-based
scheme. Furthermore, we incorporated several heuristics for adaptively
modifying various threshold parameters as the factorization proceeds,
which improves the robustness of the algorithm [71].

When tested with over 230 unsymmetric matrices, the supernodal,
area-based adaptive ILUTP combined with GMRES can solve nearly
70% of the problems. When successful, the preconditioned iterative
solver is often faster than the direct solver and uses less memory.

In general, designing an efficient ILU algorithm faces many of the
similar issues as that of the complete LU algorithm. Worse yet, the ILU
fatorization has even less arithmetic intensity and more sequentiality.
It is extremely hard to achieve a scalable implementation. Hysom and
Pothen presented a parallel approach using the domain decomposition
idea [63], and showed the numerical results with 216 processors. The
question remains wide open whether a parallel ILU can be designed
which scales to thousands of cores, let alone millions.

4.2 Low-rank factorization

In the last ten to fifteen years, several rank structured matrix repre-
sentations have been developed, such as H-matrices [56, 59, 57], H2-
matrices [16, 17, 58], quasiseparable matrices [13, 38], and semisepara-
ble matrices [20, 103]. They have been widely used in the fast solutions
of the integral equations and the partial differential equations using the
boundary element method.

More recently we have been developing a new class of structured
sparse factorization method exploiting low-rank structures using hierar-
chically semi-separable (HSS) matrices [19, 77, 103, 112]. The novelty
of the HSS-sparse solver is to apply the HSS compression techniques to
the intermediate, dense submatrices that appear in the standard sparse
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Figure 4.1: Pictorial illustrations of a block 8 × 8 HSS form and the
corresponding HSS tree T .

factorization methods, such as supernodes or frontal matrices. The re-
sulting HSS-sparse factorization can be used as a direct solver or pre-
conditioner depending on the application’s accuracy requirement and
the characteristics of the PDEs. If the randomized sampling compres-
sion technique [79] is employed in compression, it can be shown that for
the 3D model problems, the HSS-sparse factorization costs O(n) flops for
discretized matrices from certain PDEs and O(n4/3) for broader classes
of PDEs [111]. This complexity is much lower than the O(n2) cost of the
traditional, exact sparse factorization method. Moreover, the new class
of HSS-sparse factorizations can be applied to much broader classes of
discretized PDEs (including non-selfadjoint and indefinite ones) aiming
towards optimal complexity preconditioners.

Informally, the HSS representation partitions the off-diagonal blocks
of a dense matrix in a hierarchical fashion; these off-diagonal blocks are
approximated by compact forms, such as truncated SVD. A key property
of HSS is that the orthogonal bases are desired to be nested following the
hierarchical partitioning. This leads to asymptotically faster construc-
tion and factorization algorithms. Figure 4.1 illustrates a block 8 × 8
HSS representation of A, for which the hierarchical structure and the
generators Ui, Vi, Ri, and Bi are succinctly depicted by the HSS tree on
the right side. As a special example, its leading block 4 × 4 part looks
like the following, where t7 is the index set associated with node 7 of the
HSS tree:
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With this representation, we can use the ULV factorization and
the accompanying solution algorithms to solve the linear systems [21].
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In [107], we developed a set of novel parallel algorithms for the key HSS
operations (rank-revealing QR factorization, HSS construction, ULV fac-
torization and HSS solution) that are used for solving dense linear sys-
tems. The parallel algorithms fully exploit both the HSS tree parallelism
and dense matrix parallelism. We demonstrated that the new approach
is two to 30 times faster than LU factorization; it reduces memory usage
by 70- to 100-fold, using up to 8912 processing cores. Later in [106], we
developed a parallel geometric HSS-embedded multifrontal sparse solver
by employing the above parallel HSS algorithms to the dense frontal ma-
trices corresponding to the separators in nested dissection. Here, we fully
exploit three levels of parallelism from coarsest to finest: separator tree,
HSS tree and dense matrix kernels. We tested our new parallel HSS-
structured multifrontal code using up to 16,384 cores, and demonstrated
that the new solver is more than 3.5 times faster than the pure mul-
tifrontal solver, and the maximum peak memory footprint is reduced
by up to five-fold. Our new fast structured sparse solver has already
been used successfully in several geophysics applications [108, 105]. We
also show that the low-rank approximate factorization can be used as
effective preconditioners for broader classes of problems [82].

5 Hybrid methods

For the three-dimensional, multiphysics, extreme scale problems, there
are a number of challenges encountered by direct solvers (e.g., large
amount of fill) and by iterative solvers (e.g., slow or no convergence). To
mitigate these difficulties, a number of parallel hybrid (direct/iterative)
solution methods have been developed [50, 41, 113, 115, 93, 33]. The
domain decomposition based hybrid methods are amenable to highly
scalable implementations. We present here a non-overlapping domain
decomposition method called the Schur complement method (a.k.a. it-
erative substructuring) [100]. In this method, the original linear sys-
tem Ax = b is first reordered, using any parallel graph partitioning
method [66, 88, 119], into a system of the following block structure:

D1 E1

D2 E2

. . .
...

Dk Ek

F1 F2 · · · Fk C




u1
u2
...
uk
y

 =


f1
f2
...
fk
g

 , (5.1)

where D` is referred to as the `-th interior subdomain, C consists of the
separators, and E` and F` are the interfaces between D` and C. The un-
knowns in the interior subdomains are first eliminated using techniques
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from the direct solvers, and the remaining Schur complement system is
solved using a preconditioned iterative solver, such as Conjugate Gradi-
ent or GMRES, that is:

Sy = ĝ , (5.2)

where the Schur complement S is given by

S = C −
k∑

`=1

F`D
−1
` E` , (5.3)

and ĝ = g −
∑k

`=1 F`D
−1
` f`. The final solution vector u` is obtained by

solving the `-th subdomain system

D`u` = f` − E`y . (5.4)

For a symmetric positive definite matrix, it can be shown that the
Schur complement has a smaller condition number than the original co-
efficient matrix [100]. Consequently, the preconditioned iterative solver
often requires fewer iterations for the Schur complement system than for
the original system. Therefore, this method has the potential of balanc-
ing the robustness of the direct solver with the efficiency of the iterative
solver since the unknowns in each interior subdomain can be eliminated
efficiently and in parallel, while the sparsity can be enforced for solving
the Schur complement system, where most of fill may occur.

There are a number of challenges for developing a parallel algorithm
and implementation that are both scalable and numerically robust. A
straightforward parallel algorithm would assign one subdomain to each
process, i.e. single-level parallelism. Then the number of subdomains
must increase with the increasing number of processes, leading to a larger
Schur complement S, an increase in the cost of solving (5.2) and often
divergence of the iterative solver. It is thus imperative to exploit the
hierarchical parallelism: The processes are divided into k subgroups.
Each subgroup factorizes one subdomain D` in parallel using a parallel
direct solver, either a shared memory one or a distributed memory one.
All or a subset of processes participate in the iterative solution of the
Schur complement system. Hence, the numbers of subdomains can be
far fewer than the number of processes. In fact, we can keep a constant
number of subdomains and the Schur complement size while increasing
the number of processes. A good convergence is maintained regardless
of the core count, see [113, 93] for details.

The second critical issue is to design the preconditioners for solving
the Schur complement system. One method is to compute the inverses
of the local Schur complements and form additive Schwarz precondi-
tioner [50, MaPHys]. This method is more scalable but may suffer from
slow convergence, espscially with a large number of subdomains. The
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other method involves a global approximate Schur complement, in which
some entries are dropped while forming an approximate Schur comple-
ment S̃. Then, a general algebraic proconditioner can be constructed
using S̃, such as an ILU or a low-rank approximate factorization of
S̃ (see Section 4), to precondition GMRES for solving (5.2), e.g., [41,
HIPS], [113, PDSLin], and [93, ShyLU]. The global method is numeri-
cally more robust, but hard to achieve a scalable implementation.

The parallel performance of the algorithm using hierarchical paral-
lelism and global preconditioner depends on both intra-subgroup and
inter-subgroup load balance. A number of new combinatorial problems
arise in this context, such as multi-constraint graph partitioning and
sparse matrix-matrix multiplication. Some progress was made in the
area [116], but many open questions remain to be explored. Some new
partitioning problems also arise in the Block Cimmino hybrid meth-
ods [31, 33].
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